The problem of two fixed centers: bifurcations, actions, monodromy

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Problem of Two Fixed Centers: Bifurcations, Actions, Monodromy

A comprehensive analysis of the Euler-Jacobi problem of motion in the field of two fixed attracting centers is given, first classically and then quantum mechanically in semiclassical approximation. The system was originally studied in the context of celestial mechanics but, starting with Pauli’s dissertation, became a model for one-electron molecules such as H2 (symmetric case of equal centers)...

متن کامل

the problem of divine hiddenness

این رساله به مساله احتجاب الهی و مشکلات برهان مبتنی بر این مساله میپردازد. مساله احتجاب الهی مساله ای به قدمت ادیان است که به طور خاصی در مورد ادیان ابراهیمی اهمیت پیدا میکند. در ادیان ابراهیمی با توجه به تعالی خداوند و در عین حال خالقیت و حضور او و سخن گفتن و ارتباط شهودی او با بعضی از انسانهای ساکن زمین مساله ای پدید میاید با پرسشهایی از قبیل اینکه چرا ارتباط مستقیم ویا حداقل ارتباط وافی به ب...

15 صفحه اول

On the topological centers of module actions

In this paper, we  study the Arens regularity properties of module actions. We investigate some properties of topological centers of module actions ${Z}^ell_{B^{**}}(A^{**})$ and  ${Z}^ell_{A^{**}}(B^{**})$ with some conclusions in group algebras.

متن کامل

Monodromy problem for the degenerate critical points

For the polynomial planar vector fields with a hyperbolic or nilpotent critical point at the origin, the monodromy problem has been solved, but for the strongly degenerate critical points this problem is still open. When the critical point is monodromic, the stability problem or the center- focus problem is an open problem too. In this paper we will consider the polynomial planar vector fields ...

متن کامل

Quasi-integrability in a Class of Systems Generalizing the Problem of Two Fixed Centers

Abstract. The problem of two fixed centers is a classical integrable problem, stated and integrated by Euler in 1760. The integrability is due to the unexpected first integralG. Some straightforward generalizations of the problem still have the generalization of G as a first integral, but do not possess the energy integral. We present some numerical integrations suggesting that in the domain of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physica D: Nonlinear Phenomena

سال: 2004

ISSN: 0167-2789

DOI: 10.1016/j.physd.2004.05.006